Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
1.
Proc Natl Acad Sci U S A ; 119(38): e2209514119, 2022 09 20.
Article in English | MEDLINE | ID: covidwho-2017036

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) cell entry starts with membrane attachment and ends with spike (S) protein-catalyzed membrane fusion depending on two cleavage steps, namely, one usually by furin in producing cells and the second by TMPRSS2 on target cells. Endosomal cathepsins can carry out both. Using real-time three-dimensional single-virion tracking, we show that fusion and genome penetration require virion exposure to an acidic milieu of pH 6.2 to 6.8, even when furin and TMPRSS2 cleavages have occurred. We detect the sequential steps of S1-fragment dissociation, fusion, and content release from the cell surface in TMPRRS2-overexpressing cells only when exposed to acidic pH. We define a key role of an acidic environment for successful infection, found in endosomal compartments and at the surface of TMPRSS2-expressing cells in the acidic milieu of the nasal cavity.


Subject(s)
COVID-19 , Nasal Cavity , SARS-CoV-2 , Serine Endopeptidases , Virus Internalization , COVID-19/virology , Furin/genetics , Furin/metabolism , Humans , Hydrogen-Ion Concentration , Nasal Cavity/chemistry , Nasal Cavity/virology , SARS-CoV-2/physiology , Serine Endopeptidases/metabolism , Spike Glycoprotein, Coronavirus/metabolism
3.
Int J Mol Sci ; 23(14)2022 Jul 15.
Article in English | MEDLINE | ID: covidwho-1938839

ABSTRACT

In the SARS-CoV-2 lifecycle, papain-like protease PLpro cuts off the non-structural proteins nsp1, nsp2, and nsp3 from a large polyprotein. This is the earliest viral enzymatic activity, which is crucial for all downstream steps. Here, we designed two genetically encoded fluorescent sensors for the real-time detection of PLpro activity in live cells. The first sensor was based on the Förster resonance energy transfer (FRET) between the red fluorescent protein mScarlet as a donor and the biliverdin-binding near-infrared fluorescent protein miRFP670 as an acceptor. A linker with the PLpro recognition site LKGG in between made this FRET pair sensitive to PLpro cleavage. Upon the co-expression of mScarlet-LKGG-miRFP670 and PLpro in HeLa cells, we observed a gradual increase in the donor fluorescence intensity of about 1.5-fold. In the second sensor, both PLpro and its target-green mNeonGreen and red mScarletI fluorescent proteins separated by an LKGG-containing linker-were attached to the endoplasmic reticulum (ER) membrane. Upon cleavage by PLpro, mScarletI diffused from the ER throughout the cell. About a two-fold increase in the nucleus/cytoplasm ratio was observed as a result of the PLpro action. We believe that the new PLpro sensors can potentially be used to detect the earliest stages of SARS-CoV-2 propagation in live cells as well as for the screening of PLpro inhibitors.


Subject(s)
COVID-19 , SARS-CoV-2 , Coronavirus Papain-Like Proteases , HeLa Cells , Humans , Papain/metabolism , SARS-CoV-2/genetics
4.
American Journal of Respiratory and Critical Care Medicine ; 205(1), 2022.
Article in English | EMBASE | ID: covidwho-1927751

ABSTRACT

Rationale: Acute Respiratory Distress Syndrome (ARDS) is characterized by acute onset of hypoxic respiratory failure, which can be complicated by multi-organ dysfunction and death. ARDS results from inflammatory alveolar injury precipitated by direct or indirect lung injury. Neutrophils play a central role in the pathology of ARDS and release neutrophil extracellular traps (NETs) to trap and kill pathogens. Dysregulated NET formation, however, can cause inflammatory tissue damage and exacerbate acute lung injury as in COVID-19 associated ARDS. Whether detection of plasma NETs predicts outcomes in non-COVID-19 associated ARDs remains unknown. We hypothesized that plasma NET levels correlate directly with disease severity and mortality in non-COVID-19 ARDS patients. Methods: We obtained previously collected plasma samples from patients (n=200) with moderate to severe ARDS enrolled in the Re-evaluation of Systemic Early Neuromuscular Blockade (ROSE) trial at three different time points (admission, 24 hours, and 48 hours after admission) complete with clinical outcome data through 28 days after admission. We also examined age- and gender-matched healthy donor plasma (n=20). We assayed cell-free DNA levels via fluorescence and MPO-DNA complexes as a surrogate for NETs in each plasma sample. Clinical outcomes from ROSE trial participants were correlated with the quantification of NETs. We also assessed NET formation by neutrophils isolated from healthy adults following incubation with ARDS patient and healthy donor plasma samples using live cell imaging and confocal microscopy. Results: We demonstrated elevated plasma markers of NETs (cell-free DNA and MPO-DNA complexes) in ARDS plasma compared to healthy donor plasma. Deceased study participants demonstrated higher plasma NET levels on admission and at 48 hours as compared to ARDS survivors (admission: p = 0.0045 and 48 hours: p = 0.0050). Increased plasma NETs on admission, at 24 hours, and 48 hours also correlated with illness severity. Furthermore, ARDS plasma samples induced NET formation in vitro in neutrophils isolated from healthy donors while control plasma did not. Conclusion: NET formation is increased in plasma from patients with ARDS compared to healthy donor plasma, consistent with the inflammatory alveolar injury seen in ARDS. Additionally, plasma from ARDS patients induces NET formation in vitro in PMNs isolated from healthy adult donors. We speculate that exaggerated NET formation may serve as a novel biomarker for inflammatory lung injury in ARDS resulting from multiple etiologies and that strategies targeting NET formation may improve outcomes in ARDS.

5.
Journal of Molecular Structure ; : 132588, 2022.
Article in English | ScienceDirect | ID: covidwho-1670923

ABSTRACT

Cocktail therapy is one of the leading approaches for treating some complex diseases. Herein, a pH-triggered supramolecular cocktail drug delivery system assembled by the medium-strength complexes of pillar[5]arene-based schiff base (P5SB) with methylene blue (MB). Molecular modeling suggest that noncovalent interactions between schiff base side chain of P5SB and MB were mainly responsible for the stability of the complex. The amphiphilic P5SB⊃MB complex assembled into stable vesicles with an average diameter of 244.1 nm in conventional physiological environment (pH=7.4). Drug loading experiments demonstrated that doxorubicin (DOX) could be efficiently encapsulated into the hollow vesicles, and the drug would be rapidly released under acidic environment (pH=6.0). Moreover, the anti-cancer efficiency of DOX-loaded P5SB⊃MB vesicles was significantly enhanced because of the synergistic effect of P5SB, MB and DOX. Nonetheless, the live-cell imaging property of DOX was maintained after encapsulation.

6.
Mikrochim Acta ; 188(10): 352, 2021 Sep 23.
Article in English | MEDLINE | ID: covidwho-1432545

ABSTRACT

Extracellular ATP as a purinergic signaling molecule, together with ATP receptor, are playing an important role in tumor growth, therapy resistance, and host immunity suppression. Meanwhile ATP is a crucial indicator for cellular energy status and viability, thus a vital variable for tissue regeneration and in vitro tissue engineering. Most recent studies on COVID-19 virus suggest infection caused ATP deficit and release as a major characterization at the early stage of the disease and major causes for disease complications. Thus, imaging ATP molecule in both cellular and extracellular contexts has many applications in biology, engineering, and clinics. A sensitive and selective fluorescence "signal-on" probe for ATP detection was constructed, based on the base recognition between a black hole quencher (BHQ)-labeled aptamer oligonucleotide and a fluorophore (Cy5)-labeled reporter flare. The probe was able to detect ATP in solution with single digit µM detection limit. With the assistance of lipofectamine, this probe efficiently entered and shined in the model cells U2OS within 3 h. Further application of the probe in specific scenery, cardio-tissue engineering, was also tested where the ATP aptamer complex was able to sense cellular ATP status in a semi-quantitative manner, representing a novel approach for selection of functional cardiomyocytes for tissue engineering. At last a slight change in probe configuration in which a flexible intermolecular A14 linker was introduced granted regeneration capability. These data support the application of this probe in multiple circumstances where ATP measurement or imaging is on demand.


Subject(s)
Adenosine Triphosphate/analysis , Aptamers, Nucleotide , Carbocyanines , Fluorescent Dyes , Animals , Animals, Newborn , Cell Line , Fluorescence , Humans , Myocytes, Cardiac , Rats
7.
Cell Host Microbe ; 28(6): 853-866.e5, 2020 12 09.
Article in English | MEDLINE | ID: covidwho-1385263

ABSTRACT

Pathogenesis induced by SARS-CoV-2 is thought to result from both an inflammation-dominated cytokine response and virus-induced cell perturbation causing cell death. Here, we employ an integrative imaging analysis to determine morphological organelle alterations induced in SARS-CoV-2-infected human lung epithelial cells. We report 3D electron microscopy reconstructions of whole cells and subcellular compartments, revealing extensive fragmentation of the Golgi apparatus, alteration of the mitochondrial network and recruitment of peroxisomes to viral replication organelles formed by clusters of double-membrane vesicles (DMVs). These are tethered to the endoplasmic reticulum, providing insights into DMV biogenesis and spatial coordination of SARS-CoV-2 replication. Live cell imaging combined with an infection sensor reveals profound remodeling of cytoskeleton elements. Pharmacological inhibition of their dynamics suppresses SARS-CoV-2 replication. We thus report insights into virus-induced cytopathic effects and provide alongside a comprehensive publicly available repository of 3D datasets of SARS-CoV-2-infected cells for download and smooth online visualization.


Subject(s)
COVID-19/genetics , Endoplasmic Reticulum/ultrastructure , SARS-CoV-2/ultrastructure , Viral Replication Compartments/ultrastructure , COVID-19/diagnostic imaging , COVID-19/pathology , COVID-19/virology , Cell Death/genetics , Endoplasmic Reticulum/genetics , Endoplasmic Reticulum/virology , Humans , Microscopy, Electron , Pandemics , SARS-CoV-2/genetics , SARS-CoV-2/pathogenicity , Viral Replication Compartments/metabolism , Virus Replication/genetics
8.
Front Microbiol ; 12: 701198, 2021.
Article in English | MEDLINE | ID: covidwho-1359202

ABSTRACT

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the causative agent of the acute respiratory disease COVID-19, which has become a global concern due to its rapid spread. The common methods to monitor and quantitate SARS-CoV-2 infectivity in cell culture are so far time-consuming and labor-intensive. Using the Sleeping Beauty transposase system, we generated a robust and versatile cellular infection model that allows SARS-CoV-2 infection experiments compatible for high-throughput and live cell imaging. The model is based on lung derived A549 cells, which show a profound interferon response and convenient cell culture characteristics. ACE2 and TMPRSS2 were introduced for constitutive expression (A549-AT). Subclones with varying levels of ACE2/TMPRSS2 were screened for optimal SARS-CoV-2 susceptibility. Furthermore, extensive evaluation demonstrated that SARS-CoV-2 infected A549-AT cells were distinguishable from mock-infected cells and already showed approximately 12 h post infection a clear signal to noise ratio in terms of cell roughness, fluorescence and a profound visible cytopathic effect. Moreover, due to the high transfection efficiency and proliferation capacity, Sleeping Beauty transposase-based overexpression cell lines with a second inducible fluorescence reporter cassette (eGFP) can be generated in a very short time, enabling the investigation of host and restriction factors in a doxycycline-inducible manner. Thus, the novel model cell line allows rapid and sensitive monitoring of SARS-CoV-2 infection and the screening for host factors essential for viral replication.

9.
Molecules ; 26(10)2021 May 18.
Article in English | MEDLINE | ID: covidwho-1247999

ABSTRACT

Amlodipine, a unique long-lasting calcium channel antagonist and antihypertensive drug, has weak fluorescence in aqueous solutions. In the current paper, we show that direct visualization of amlodipine in live cells is possible due to the enhanced emission in cellular environment. We examined the impact of pH, polarity and viscosity of the environment as well as protein binding on the spectral properties of amlodipine in vitro, and used quantum chemical calculations for assessing the mechanism of fluorescence quenching in aqueous solutions. The confocal fluorescence microscopy shows that the drug readily penetrates the plasma membrane and accumulates in the intracellular vesicles. Visible emission and photostability of amlodipine allow confocal time-lapse imaging and the drug uptake monitoring.


Subject(s)
Amlodipine/pharmacology , Microscopy, Fluorescence , Amlodipine/chemistry , Cell Survival/drug effects , HEK293 Cells , Humans , Indoles/metabolism , Microscopy, Confocal , Models, Biological , Molecular Conformation , Solutions
10.
J Virol ; 95(4)2021 01 28.
Article in English | MEDLINE | ID: covidwho-1117221

ABSTRACT

Positive-strand RNA viruses have been the etiological agents in several major disease outbreaks over the last few decades. Examples of this include flaviviruses, such as dengue virus and Zika virus, which cause millions of yearly infections around the globe, and coronaviruses, such as SARS-CoV-2, the source of the current pandemic. The severity of outbreaks caused by these viruses stresses the importance of research aimed at determining methods to limit virus spread and to curb disease severity. Such studies require molecular tools to decipher virus-host interactions and to develop effective treatments. Here, we describe the generation and characterization of a reporter system that can be used to visualize and identify cells infected with dengue virus or SARS-CoV-2. This system is based on viral protease activity that mediates cleavage and nuclear translocation of an engineered fluorescent protein stably expressed in cells. We show the suitability of this system for live cell imaging, for visualization of single infected cells, and for screening and testing of antiviral compounds. With the integrated modular building blocks, this system is easy to manipulate and can be adapted to any virus encoding a protease, thus offering a high degree of flexibility.IMPORTANCE Reporter systems are useful tools for fast and quantitative visualization of virus-infected cells within a host cell population. Here, we describe a reporter system that takes advantage of virus-encoded proteases expressed in infected cells to cleave an ER-anchored fluorescent protein fused to a nuclear localization sequence. Upon cleavage, the GFP moiety translocates to the nucleus, allowing for rapid detection of the infected cells. Using this system, we demonstrate reliable reporting activity for two major human pathogens from the Flaviviridae and the Coronaviridae families: dengue virus and SARS-CoV-2. We apply this reporter system to live cell imaging and use it for proof-of-concept to validate antiviral activity of a nucleoside analogue. This reporter system is not only an invaluable tool for the characterization of viral replication, but also for the discovery and development of antivirals that are urgently needed to halt the spread of these viruses.


Subject(s)
COVID-19/virology , Dengue Virus/isolation & purification , Dengue/virology , SARS-CoV-2/isolation & purification , A549 Cells , Animals , COVID-19/diagnosis , COVID-19/metabolism , COVID-19/pathology , Cell Line , Chlorocebus aethiops , Dengue/diagnosis , Dengue/metabolism , Dengue/pathology , Dengue Virus/genetics , Dengue Virus/metabolism , Genes, Reporter , Green Fluorescent Proteins/metabolism , HEK293 Cells , Humans , Nuclear Localization Signals/metabolism , SARS-CoV-2/genetics , SARS-CoV-2/metabolism , Vero Cells , Viral Nonstructural Proteins/metabolism , Virus Replication
11.
Sens Actuators B Chem ; 334: 129663, 2021 May 01.
Article in English | MEDLINE | ID: covidwho-1085478

ABSTRACT

The global outbreak of coronavirus disease and rapid spread of the causative severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) represent a significant threat to human health. A key mechanism of human SARS-CoV-2 infection is initiated by the combination of human angiotensin-converting enzyme 2 (hACE2) and the receptor-binding domain (RBD) of the SARS-CoV-2-derived spike glycoprotein. Despite the importance of these protein interactions, there are still insufficient detection methods to observe their activity at the cellular level. Herein, we developed a novel fluorescence resonance energy transfer (FRET)-based hACE2 biosensor to monitor the interaction between hACE2 and SARS-CoV-2 RBD. This biosensor facilitated the visualization of hACE2-RBD activity with high spatiotemporal resolutions at the single-cell level. Further studies revealed that the FRET-based hACE2 biosensors were sensitive to both exogenous and endogenous hACE2 expression, suggesting that they might be safely applied to the early stage of SARS-CoV-2 infection without direct virus use. Therefore, our novel biosensor could potentially help develop drugs that target SARS-CoV-2 by inhibiting hACE2-RBD interaction.

12.
Small Methods ; 5(2): 2001031, 2021 Feb 15.
Article in English | MEDLINE | ID: covidwho-986422

ABSTRACT

The ongoing corona virus disease 2019 (COVID-19) pandemic, caused by SARS-CoV-2 infection, has resulted in hundreds of thousands of deaths. Cellular entry of SARS-CoV-2, which is mediated by the viral spike protein and ACE2 receptor, is an essential target for the development of vaccines, therapeutic antibodies, and drugs. Using a mammalian cell expression system, a genetically engineered sensor of fluorescent protein (Gamillus)-fused SARS-CoV-2 spike trimer (STG) to probe the viral entry process is developed. In ACE2-expressing cells, it is found that the STG probe has excellent performance in the live-cell visualization of receptor binding, cellular uptake, and intracellular trafficking of SARS-CoV-2 under virus-free conditions. The new system allows quantitative analyses of the inhibition potentials and detailed influence of COVID-19-convalescent human plasmas, neutralizing antibodies and compounds, providing a versatile tool for high-throughput screening and phenotypic characterization of SARS-CoV-2 entry inhibitors. This approach may also be adapted to develop a viral entry visualization system for other viruses.

SELECTION OF CITATIONS
SEARCH DETAIL